大学受験 数学

【背理法とは?】この例なら、どんな馬鹿でも背理法が分かる!

投稿日:

 

高1の数学で習う「背理法」。

高校数学では数学的帰納法と同レベルに嫌われる「背理法」ですが、実はとっても簡単。

みんな毎日「背理法」を使っているんです。

 

それをちょっと難しく言っただけ。

今回は「どんな馬鹿でもわかる」ように背理法を解説するので、安心してください。

この例と説明で分からなかったら、上野動物園のチンパンジーと一緒に一生を過ごしてくださいw

 

(それだけ自信があるのでw)

 

背理法とは?

まず「背理法」とは何でしょうか。

まあ、難しく言えば

背理法とは、ある命題 P を証明したいときに、P が偽であると仮定して、そこから矛盾を導くことにより、P が偽であるという仮定が誤り、つまり P は真であると結論付けることである

ウィキペディア

 

背理法っていうのは、私の理解だと

 

「Yes」or「No」、2つの道がある。

「No」の道を進んでいくと、行き止まりが現れてしまい、進めなくなってしまった。(矛盾)

だから「Yes」の道を進むのが正解だったんだ!

 

そんな感じです。

「Yes」か「No」のどっちの道を進めばいいか分かれば、それで終了です。

「Yes」で進んでいくと、ゴールにたどり着くまでが長い。でも「No」は行き止まりが近い。

そんなときは「Yes」で長い間進むより、「No」ですぐに行き止まりについてしまえば、「Yes」が正解だったと分かる。

 

そんな状況のときに使います。

 

背理法の具体例を紹介

背理法の流れとしては、

Aを証明したい

「Aでない」で話を進める

矛盾

「Aでない」は間違い

Aが正しい

背理法の具体例① 俺のアイデア

「私は男性である」という命題を証明しよう。

 

背理法で証明する。

 

「私が男性でない」つまり「私は女性である」と仮定する。

しかし、私には男性にしかないはずの「アレ」が付いている。

よって矛盾。

 

「私は女性である」という仮定が誤りであった。つまり、「私は男性である」

(証明終)

別に引用したわけではないですが、見やすいので

今回の証明は「私は男性である」を直接証明することは簡単だったので、わざわざ背理法を使う意味はなかったですが、

たまたま思いついたのでw

すいません。急に下品なの思いついてw

 

一番最初に書こうと思っていたのは例②です。

背理法の具体例② よくドラマで見る

<状況>

A容疑者は「18:00まで横浜で友人のパーティーに参加していたこと」が分かっている。

そして殺人事件は18:50に八王子で起こった。

 

ここから「Aさんは殺人犯でないこと」を証明する。

 

背理法で証明する。

 

「Aさんが殺人犯である」と仮定する。

そうすると、Aさんは18:50に八王子にいる必要がある。

しかし、横浜-八王子は横浜線でも最低1時間かかる。つまり、Aさんが八王子に到着するのは、最短でも19:00。

18:50に八王子にいることは不可能。よって矛盾。

 

「Aさんは殺人犯である」という仮定が誤り。「Aさんは殺人犯ではない」

 

こういうの推理ドラマでよく見ますよね。コナンみたいな探偵漫画でもよく出てきます。

実は、みんな日頃から慣れ親しんでいる推理は「背理法」なんです。

 

背理法 証明問題① 

「有理数=q / p」パターン

√2が無理数であることを証明しなさい。

√打つと見にくいので、写真で行きます。

今回のポイント「有理数は q/p(pは自然数。qは整数)」とおける。

ここでキーとなるのが「pとqは互いに素」。つまり、pとqは公約数を持たないわけです。(1は除きます)

(偶数)²=(偶数)

(奇数)²=(奇数)

だから(偶数)=x²のとき、xは偶数なんです。

pとqが公約数2を持ってしまうと、互いに素(公約数を持たない)に反してしまいます。

つまり矛盾です。

 

そして最後に決め台詞。

背理法 証明問題②

「有理数=R」パターン

「2+√3」が無理数であることを証明せよ。

途中の「左辺は無理数、右辺は有理数」となるとき、右辺は有理数の単純計算だけから成るわけです。

有理数の「和・差・積・商」だけから成るものは有理数です。

そしていつものように、矛盾。

「不条理」ってのは「間違い」ってことです。

背理法 証明問題③

恒等式パターン

x、yは有理数とする。

x+y√2=0のとき、x=y=0となることを証明せよ。ただし、√2は無理数である。

「x+y√3=0のとき、x=y=0」の反対は、

「x+y√3=0のとき、x≠0 or y≠0」

ですが、こんなに全体を否定する必要はないです。

 

「y=0」の反対は「y≠0」という狭い範囲で背理法を使ったわけです。y=0だとyで両辺を割れないので。

「y≠0」で矛盾が起きたので、y=0だね。

y=0だと、x=0になっちゃうね。

 

いつの間にか証明終わってた。

そんな感じ。

 

x+y√2=a+b√2

みたいなやつは、右辺を左辺に移行して

(x-a)+(y-b)√2=0

にしてしまえば、同じように解けますよね。「y-b≠0と仮定する」から始めればいいのです。

 

まとめ

定期テストなんかで出てくる「無理数・有理数の証明」の問題はだいたい↑の3パターンで解けます。

「~~=q/p」と置くか、「~~=R」と置くか、「~~≠0」と仮定するか。

 

√aが無理数であることの証明は、①。

√どうしの和・差の証明は、②。

係数が文字の証明は、③。

 

あくまでも目安ですが、だいたい↑の識別でOKです。

他は応用問題となるので、パターンはなく、その場で頭を使って考えてください。

 

背理法は使いこなせば、強力な証明法なのでぜひとも習得してください。

 

 

 

-大学受験, 数学

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

確実に実力がつく!ベストな英語長文の参考書を選ぶ4つのコツ!

    参考書って多すぎ!!!   人生で初めて書店に行った人は大抵そう思ってます。 特に英語の参考書の数は半端ない。   そんな中でもひと際選びにくいのが英語長文の参考書。 色々な出版社が似たような …

no image

古文を難関大にステップアップ!『読み解き古文単語』の使い方!

    後回しになりやすい国語。 苦手な人が多い国語。   現代文は安定して高得点を狙うことが難しいし、勉強法もよく分からないという苦境。   それなら、 古典を固めよう。   ということで、 今回は …

【成績報告】センター模試の英語198点だったんで報告します。

  はい。 また成績報告と称した 自慢大会です。   とは言ってもネットで勉強法語っている以上、ある程度の実力は証明しないといけないので成績報告を混ぜてます。(ウソ)   ただ単に自慢したいだけですw …

【英文法】たった45日で英文法の基礎を完璧にする勉強法見つけました。

  英語の点数を上げたい!   それは受験生全員もしくは、大人にも当てはまることですよね。 そして、英語の上達には「単語」と「英文法」が必要不可欠。 今回は英文法の基礎をたった90日で完璧にする勉強法 …

例題だけはヤメろ!『1対1対応の演習』を吸い尽くす使い方&レベル!

受験生が大好きな大学への数学、 「一対一対応の演習」。 私個人の印象としては、青チャートの次に知名度高いんじゃないか、と思います。 さすがに青チャート様はやばいです(笑)。   そんな有名な「一対一対 …